Logical Relations for

a Manifest Contract Calculus

Taro Sekiyama Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi lgarashi Logical Relations for a Manifest Contract Calculus

Manifest Contract Calculus [1]

o A typed lambda calculus with (higher-order)
software contracts
@ hybrid checking of software contracts
e Static type system: refinement type
{x:T | e}
e.g. {x:int|0 < x}
o Dynamic checking: cast (T} = Ts)’
e.g. (int = {x:int|x < 0})*

[1] Knowles and Flanagan, 2010

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Programming in Manifest Contract

Calculus

div : int — {x:int|0 # x} — int
div “abc” 2 (x Compiler error)

div 6 0 (+ Compiler error x)

(+ Compiler doesn’t know that y is non-zero)
(fun y :int. div 6 y)

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Programming in Manifest Contract

Calculus

div : int — {x:int|0 # x} — int

div “abc” 2 (x Compiler error)
div 6 0 (+ Compiler error x)

(+ Compiler inserts a cast *)
(fun y :int. div 6 ({int = {x:int|0 # x})' y))

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Previous Work: Upcast Elimination

Upcast Elimination [1,2]

An upcast and an identity function are contextually
equivalent

An upcast is a cast from a type to its supertype
o ({x:iint|0 < x} = int)*
o ({x:int|is_square x} = {x:int|0 < x})*
Upcast elimination is useful for optimization

[1] Knowles and Flanagan, 2010
[2] Belo et al., 2011

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Previous Work: Correctness of Proofs

Previous work

@ tried to prove upcast elimination by using
logical relations

@ didn't really prove soundness of the logical
relations w.r.t contextual equivalence

A Fyl?!
(T, = T,)' ~ funx.x| proved proved
~C~ flawed not proved
(T, = T,)" ~ fun x.x | not proved | not proved

~: contextual equivalence ~: logical relation
[1] Knowles and Flanagan, 2010 [2] Belo et al., 2011

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Logical Relations for

a Manifest Contract Calculus,

Taro Sekiyama Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi lgarashi Logical Relations for a Manifest Contract Calculus,

This Work

This work
@ fixes the flaws of previous work
@ introduces FE**
e a polymorphic manifest contract calculus

with fixed-point operator
o non-termination is only effect in FE**

Mg | Fy | FE¥
Subsumption rule V| x| x
Polymorphic types X | v | Vv
Fixed-point operator | x | X | v

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Contribution

@ Semi-typed contextual equivalence
@ A sound logical relation w.r.t semi-typed
contextual equivalence

@ Proof of upcast elimination by using the logical
relation above

o We believe correctness of our proof :-)

A Fy FLi=
(T, = To)" ~ fun x.x proved proved proved
~Cr flawed | not proved | proved
(T, = T,)" ~ fun x.x | not proved | not proved | proved

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

@ A Manifest Contract Calculus: FEi*
© Semi-Typed Contextual Equivalence
© Logical Relation

@ Upcast Elimination

@ Discussion

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

@ A Manifest Contract Calculus: FEi*

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Overview of F;*

Fi** is a typed lambda calculus with
polymorphic types,
refinement types {x:T | e},

casts (T; = T»)¢, and

°

°

@ dependent function types x: T; — T,

°

@ fixed-point operator (recursive functions)

Au | Fr
Subsumption rule | v/ | X
Polymorphic types | X | v | V
Recursive functions | X | X

fix
1:H

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Refinement types: {x:T | e}
@ denote a set of values which

e arein T
o satisfy the contract (boolean expression) e

o eg. {xint|0<x}=4{1,2,3,...}

Dependent function types: x:T1 — Ts
@ denote a set of functions which

e accept values v of Ty
o return values of T, [v/X]

@ eg. xiint — {y:int|x < y}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Dynamic Checking: Cast

Casts: (T = To)*
@ accept values v of T
@ check whether v can behave as T,

o If the checking fails, the cast is blamed
with label ¢

o eg. (int= {x:int|0 < x})*

(int = {x:int|0 < x})£ 0 ~* {1/
(int = {x:int |0 < x})¢ 2 ~* 2

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Digression: Pitfall of A-Normal Form

o At first, we gave A-normal form as syntax

o following [3] which uses A-normal form
to simplify the definition and the proof
ser=viwn|letx=¢eine| -
o It is difficult to prove even type soundness
e to require substitution of terms
e A-normal form is not closed under
substitution of terms

(e : T, r,XZT1|_32:T2
Flet x =€, in e : Tyer/x]

[3] Pitts, 2005

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

© Semi-Typed Contextual Equivalence

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Review: (Typed) Contextual Equivalence

€1 ~typed €2 : T
@ ¢; and ey have the same observable result
under any contexts

e which are well-typed and accept any terms
of T

@ ¢; and e, are typed at the same type T

(fun x :int. 0) &y peq (fun x :int. x % 0) : int — int
(fun x :int. 0) #4peq (fun x :int. x + 2) :int — int

(fun x :int. 0) % peq (fun x : bool. 0) : int — int

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

@ Upcast elimination doesn’t hold in typed
contextual equivalence

e An upcast and an identity function may
have different types
o Note lack of a subsumption rule

<T1:>T2>€‘funx:T1.x‘funx: Ts. x
T1—>T2 ‘ T1—>T1 ‘ T2—>T2

@ We must relax typed contextual equivalence

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Semi-Typed Contextual Equivalence

€~ € T
@ ¢; and ey have the same observable result

under any well-typed contexts
@ Only e is typed at T

@ e can even be ill-typed

(fun x :int. 0) ~ (fun x : int. x % 0) : int — int
(fun x :int. 0) % (fun x : int. x + 2) : int — int

(fun x :int. 0) ~ (fun x : bool. 0) : int — int

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Formal Definition

Semi-typed contextual equivalence ~ is the largest
set satisfying the following:

QIflTFe~e:T,thenl e T

Q IfDF e ~e: T, then e; and e, have the
same observable result

Q Reflexivity, Transitivity, (Typed) Symmetry
@ Compatibility
© Substitutivity

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Compatibility and Substitutivity Rules

Choose typed terms for substitution on types
@ so that the type after the substitution is well-formed

E.g.
Compatibility: term application

rFellwegli(X:Tl—)Tg) r|_612%622:T1

[+ €11 €12 = €91 €99 . TQ [elg/X]
Substitutivity: value substitution

MxTi, M e~e: Ty ThFvirw: T
C v /x] e [vi/x] & e [va/x] : To[vi/X]

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

© Logical Relation

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Overview of Logical Relation

€1 X 6! T
@ ~ is defined by using
o basic ideas of the logical relation for Fy[2]
o T T-closure[3]

@ A method to give a logical relation to a
lambda calculus with recursive functions

@ Only ¢ is typed
e similarly to semi-typed contextual
equivalence

[2] Belo et al., 2011
[3] Pitts, 2005

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

How to Define Logical Relation by T T

@ Define value relations for base types

bool: {(true,true), (false,false)}

int: {...,(-1,-1),(0,0),(1,1),...}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

How to Define Logical Relation by T T

@ Define value relations for base types

@ Define term relations for base types by
operation T T

o [T expands value relations to term
relations

bool : {(true, not false),(true && true, true) ...}

int: {(1+1,2),(0%3,0+0),...}

. T .
| Value relation| —— | Term relation]

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

How to Define Logical Relation by T T

@ Define value relations for base types

@ Define term relations for base types by
operation TT

@ Define value relations for complex types

int — int : {(succ, fun x.x + 1),...}

TT
| Value relation | | Term relation]

_/

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

How to Define Logical Relation by T T

@ Define value relations for base types

@ Define term relations for base types by
operation TT

@ Define value relations for complex types

@ Define term relations for complex types by
operation T T

. IT .
| Value relation| —— [Term relation]

~—_

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

How to Define Logical Relation by T T

@ Define value relations for base types

@ Define term relations for base types by
operation TT

@ Define value relations for complex types

@ Define term relations for complex types by
operation T T

. IT .
| Value relation| — [Term relation]

_/

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Relations for Closed Terms

@ Value relation: T(Q,(S)Va'
@ Term relation: T(6,6)™

Here,

@ 0 is a valuation for type variables in T

o 0= {CY — (I’, Tl, Tg), }
r is a term relation and an interpretation of «

o Notation: 0, = {(a—~ T;),...}

@ 0 is a valuation for variables in T
o 0={x— (v1,w),...}
o Notation: §; = {(x — vj), ...}

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Value/Term Relation: Base Types

Base type: B

Value Relation

(vi,) € B(6,05) iff
vi = W, and v; is a constant of B

Term Relation
8(9, 5)tm — (B(@, 5)va|)TT

Taro Sekiyama Atsushi Igarashi

Logical Relations for a Manifest Contract Calculus,

Value/Term Relation:
Dependent Function Types

Value Relation
(Vl, VQ) € (XZTl — TQ)(Q,(S)Val iff
for any (v{,v5) € T1(0,6)™,
(vi vi,vo v§) € To(0,0{x — v{, 4}

Term Relation
(x:Ty — T5)(0,0)™ = ((x:Ty — T3)(b, 5)"3')TT

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Value/Term Relation: Refinement Types

(vi,w0) € {x:T |e}(8,6)" iff
o (vi,wnn) € T(H,4)™
o 01(01(e[wva/x])) ~* true
@ 0y(do(e[va/x])) ~* true

Term Relation
{x:T[e}(0,0)™ = ({x:T | e}(8,0)*) "

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Logical Relation for Open Terms

Definition (Logical Relation for Open Terms)
e ~e: T iff

Qri—el:T

Q (01(01(e1)), 02(d2(e2))) € T(O,0)™
where [= 60: 0

@ ¢ and ey are related for well-formed
substitution 8 and d

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Properties of Logical Relation

Theorem (Soundness)
IfTHFe ~e:T,thenlT e ~e: T

@ Provethat ~~ satisfies the properties defining ~

Theorem (Completeness w.r.t Typed Terms)
IfTHFe~e:TandlkFe: T,
thenlT e ~e: T

@ An orthodox method doesn’t go through

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Soundness: Overview of Proof

We must prove that for soundness

the logical relation satisfies
o reflexivity, transitivity, typed symmetry
@ compatibility

@ substitutivity

Note that

o it suffices to prove only compatibility and
substitutivity in [3]
@ all the properties are proved in this work

[3] Pitts, 2005

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

@ Upcast Elimination

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Upcast Elimination

Upcast Elimination

An upcast and an identity function are contextually
equivalent

Lemma
If '+ T7 <: Ty, then
TF(Ti=) ~(funx: T1.x): T = T,

If '+ T7 <: Ty, then
TF(Ti=)Y ~(funx: T.x): T = T,

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Contents

@ Discussion

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

Conclusion

@ A sound logical relation w.r.t semi-typed
contextual equivalence

@ Proof of upcast elimination

Technically,
@ T T-closure works in manifest contract calculus
with non-termination
e The proofs of the properties are
troublesome
@ “Semi-typedness” doesn't complicate the proof
of soundness

o affects the proof of completeness

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

@ Unrestricted completeness

e removal of “typedness” assumption
@ Correctness of other optimizations
o Effects other than non-termination

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus,

	A Manifest Contract Calculus: FfixH
	Semi-Typed Contextual Equivalence
	Logical Relation
	Upcast Elimination
	Discussion

