Logical Relations for a Manifest Contract Calculus

Taro Sekiyama

Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus

Manifest Contract Calculus [1]

- A typed lambda calculus with (higher-order) software contracts
- hybrid checking of software contracts
 - Static type system: refinement type {x: T | e} e.g. {x:int | 0 < x}
 Dynamic checking: cast ⟨T₁ ⇒ T₂⟩^ℓ e.g. ⟨int ⇒ {x:int | x < 0}⟩^ℓ

[1] Knowles and Flanagan, 2010

Programming in Manifest Contract Calculus

$$\mathsf{div}:\,\mathsf{int}\to\{x:\mathsf{int}\,|\,\mathsf{0}\neq x\}\to\mathsf{int}$$

- div "abc" 2 (* Compiler error *)
- div 6 0 (* Compiler error *)
- (* Compiler doesn't know that y is non-zero *) (fun y : int. div 6 y)

Programming in Manifest Contract Calculus

$$\mathsf{div}:\,\mathsf{int}\to\{x:\mathsf{int}\,|\,\mathsf{0}\neq x\}\to\mathsf{int}$$

div "abc" 2 (* Compiler error *)

div 6 0 (* Compiler error *)

(* Compiler inserts a cast *) (fun y : int. div 6 ($\langle int \Rightarrow \{x:int | 0 \neq x\} \rangle^{\ell} y$))

Previous Work: Upcast Elimination

Upcast Elimination [1,2]

An upcast and an identity function are contextually equivalent

An upcast is a cast from a type to its supertype

•
$$\langle \{x: int \mid 0 < x\} \Rightarrow int \rangle^{\ell}$$

• $\langle \{x: int \mid is_square \ x\} \Rightarrow \{x: int \mid 0 < x\} \rangle^{\ell}$

Upcast elimination is useful for optimization

Previous Work: Correctness of Proofs

Previous work

- tried to prove upcast elimination by using *logical relations*
- didn't really prove soundness of the logical relations w.r.t contextual equivalence

$$\begin{array}{|c|c|c|c|c|}\hline & \lambda_{\rm H}^{[1]} & F_{\rm H}^{[2]} \\ \hline \langle T_1 \Rightarrow T_2 \rangle^{\ell} \simeq {\rm fun \ x.x} & {\rm proved} & {\rm proved} \\ \hline \simeq \, \subseteq \, \thickapprox & {\rm flawed} & {\rm not \ proved} \\ \hline \langle T_1 \Rightarrow T_2 \rangle^{\ell} \approx {\rm fun \ x.x} & {\rm not \ proved} & {\rm not \ proved} \end{array}$$

≈: contextual equivalence ~: logical relation
 [1] Knowles and Flanagan, 2010 [2] Belo et al., 2011

Logical Relations for a Manifest Contract Calculus, Fixed

Taro Sekiyama

Atsushi Igarashi

Kyoto University

Taro Sekiyama Atsushi Igarashi Logical Relations for a Manifest Contract Calculus, Fixed

This Work

This work

- fixes the flaws of previous work
- introduces F_{H}^{fix}
 - a polymorphic manifest contract calculus with *fixed*-point operator
 - \bullet non-termination is only effect in $F_{\rm H}^{\rm fix}$

	$\lambda_{\mathtt{H}}$	F_{H}	$\mathrm{F}_{\mathrm{H}}^{\mathtt{fix}}$
Subsumption rule	\checkmark	×	X
Polymorphic types	×	\checkmark	\checkmark
Fixed-point operator	×	×	\checkmark

Contribution

- Semi-typed contextual equivalence
- A sound logical relation w.r.t *semi-typed* contextual equivalence
- Proof of upcast elimination by using the logical relation above
 - We believe correctness of our proof :-)

	$\lambda_{ ext{H}}$	F _H	$F_{\rm H}^{\tt fix}$
$\langle T_1 \Rightarrow T_2 angle^\ell \simeq$ fun x.x	proved	proved	proved
$\simeq \subseteq \approx$	flawed	not proved	proved
$\langle T_1 \Rightarrow T_2 angle^\ell pprox ext{fun x.x}$	not proved	not proved	proved

1 A Manifest Contract Calculus: F_{H}^{fix}

Semi-Typed Contextual Equivalence

3 Logical Relation

Opcast Elimination

Contents

1 A Manifest Contract Calculus: F_{H}^{fix}

2 Semi-Typed Contextual Equivalence

Iogical Relation

Upcast Elimination

5 Discussion

Overview of F_{H}^{fix}

$F_{\rm H}^{\tt fix}$ is a typed lambda calculus with

- polymorphic types,
- refinement types $\{x: T \mid e\}$,
- dependent function types $x: T_1 \rightarrow T_2$,

• casts
$$\langle extsf{T}_1 \Rightarrow extsf{T}_2
angle^\ell$$
, and

• fixed-point operator (recursive functions)

$$\begin{tabular}{|c|c|c|c|c|} \hline $\lambda_{\rm H}$ & $F_{\rm H}$ & $F_{\rm H}^{\tt fix}$ \\ \hline Subsumption rule & \checkmark & \times & \times \\ \hline Polymorphic types & \times & \checkmark & \checkmark \\ \hline Recursive functions & \times & \times & \checkmark & \checkmark \\ \hline \end{tabular}$$

Types

Refinement types: $\{x: T \mid e\}$

- denote a set of values which
 - are in T
 - satisfy the contract (boolean expression) e

• e.g.
$${x:int | 0 < x} = {1, 2, 3, ...}$$

Dependent function types: $x: T_1 \rightarrow T_2$ • denote a set of functions which

- accept values v of T_1
- return values of $T_2[v/x]$
- e.g. $x:int \rightarrow \{y:int \mid x < y\}$

Dynamic Checking: Cast

Casts:
$$\langle T_1 \Rightarrow T_2 \rangle^{\ell}$$

- accept values v of T_1
- check whether v can behave as T_2
 - If the checking fails, the cast is blamed with label ℓ

• e.g.
$$\langle \text{int} \Rightarrow \{x: \text{int} \mid 0 < x\} \rangle^{\ell}$$

$$egin{array}{l} \langle \mathsf{int} \Rightarrow \{x : \mathsf{int} \, | \, \mathsf{0} < x\}
angle^\ell \, \, \mathsf{0} \rightsquigarrow^* \Uparrow \ell \ \langle \mathsf{int} \Rightarrow \{x : \mathsf{int} \, | \, \mathsf{0} < x\}
angle^\ell \, \, \mathsf{2} \rightsquigarrow^* 2 \end{array}$$

Digression: Pitfall of A-Normal Form

- At first, we gave A-normal form as syntax
 - following [3] which uses A-normal form to simplify the definition and the proof

•
$$e ::= v_1 v_2 \mid \mathsf{let} \ x = e_1 \mathsf{ in } e_2 \mid \cdots$$

- It is difficult to prove even type soundness
 - to require substitution of terms
 - A-normal form is *not* closed under substitution of terms

$$\frac{\mathsf{\Gamma} \vdash \mathsf{e}_1 : \mathsf{T}_1 \quad \mathsf{\Gamma}, \mathsf{x} : \mathsf{T}_1 \vdash \mathsf{e}_2 : \mathsf{T}_2}{\mathsf{\Gamma} \vdash \mathsf{let} \ \mathsf{x} = \mathsf{e}_1 \ \mathsf{in} \ \mathsf{e}_2 : \mathsf{T}_2 \left[\mathsf{e}_1/\mathsf{x}\right]}$$

[3] Pitts, 2005

1 A Manifest Contract Calculus: F_{H}^{fix}

Semi-Typed Contextual Equivalence

3 Logical Relation

Upcast Elimination

5 Discussion

Review: (Typed) Contextual Equivalence

$$e_1 \approx_{typed} e_2$$
: T

- *e*₁ and *e*₂ have the same observable result under any contexts
 - which are well-typed and accept any terms of T
- e_1 and e_2 are typed at the same type T

 $(\text{fun } x : \text{int. 0}) \approx_{typed} (\text{fun } x : \text{int. } x * 0) : \text{int} \rightarrow \text{int}$ $(\text{fun } x : \text{int. 0}) \not\approx_{typed} (\text{fun } x : \text{int. } x + 2) : \text{int} \rightarrow \text{int}$

 $(\text{fun } x : \text{int. } 0) \not\approx_{typed} (\text{fun } x : \text{bool. } 0) : \text{int} \rightarrow \text{int}$

Problem

- Upcast elimination doesn't hold in typed contextual equivalence
 - An upcast and an identity function may have different types
 - Note lack of a subsumption rule

$$egin{array}{c|c|c|c|c|c|c|c|} \langle T_1 \Rightarrow T_2
angle^\ell & ext{fun } x:T_1. \ x & ext{fun } x:T_2. \ x \ \hline T_1 o T_2 & ext{T}_1 o T_1 & ext{T}_2 o T_2 \end{array}$$

• We must relax typed contextual equivalence

Semi-Typed Contextual Equivalence

 $e_1 \approx e_2$: T

e₁ and e₂ have the same observable result under any well-typed contexts
Only e₁ is typed at T

e₂ can even be ill-typed

$$(\texttt{fun } x: \texttt{int. } 0) pprox (\texttt{fun } x: \texttt{int. } x*0): \texttt{int}
ightarrow \texttt{int}$$

 $(\texttt{fun } x: \texttt{int. } 0)
ot \approx (\texttt{fun } x: \texttt{int. } x+2): \texttt{int}
ightarrow \texttt{int}$

 $(fun x : int. 0) \approx (fun x : bool. 0) : int \rightarrow int$

Formal Definition

Definition

Semi-typed contextual equivalence \approx is the largest set satisfying the following:

- If $\Gamma \vdash e_1 \approx e_2$: *T*, then $\Gamma \vdash e_1$: *T*
- If Ø ⊢ e₁ ≈ e₂ : T, then e₁ and e₂ have the same observable result
- Reflexivity, Transitivity, (Typed) Symmetry
- Compatibility
- Substitutivity

Compatibility and Substitutivity Rules

Choose *typed* terms for substitution on types

so that the type after the substitution is well-formed

E.g.

Compatibility: term application

$$\frac{\Gamma \vdash e_{11} \approx e_{21} : (x:T_1 \rightarrow T_2) \quad \Gamma \vdash e_{12} \approx e_{22} : T_1}{\Gamma \vdash e_{11} \; e_{12} \approx e_{21} \; e_{22} : T_2 \left[\frac{e_{12}}{x}\right]}$$

Substitutivity: value substitution

$$\frac{\Gamma, x: T_1, \Gamma' \vdash e_1 \approx e_2: T_2 \quad \Gamma \vdash v_1 \approx v_2: T_1}{\Gamma, \Gamma'[\mathbf{v}_1/x] \vdash e_1 [\mathbf{v}_1/x] \approx e_2 [\mathbf{v}_2/x]: T_2 [\mathbf{v}_1/x]}$$

Contents

1) A Manifest Contract Calculus: $F_{\rm H}^{\rm fix}$

2 Semi-Typed Contextual Equivalence

3 Logical Relation

Upcast Elimination

5 Discussion

Overview of Logical Relation

- $e_1 \simeq e_2$: T
 - \simeq is defined by using
 - basic ideas of the logical relation for $F_H[2]$ • $\top \top$ -closure[3]
 - A method to give a logical relation to a lambda calculus with recursive functions
 - Only e₁ is typed
 - similarly to semi-typed contextual equivalence

[2] Belo et al., 2011[3] Pitts, 2005

Define value relations for base types

- Define value relations for base types
- O Define term relations for base types by operation $\top \top$
 - $\top \top$ expands value relations to term relations

bool : {(true, not false),(true && true, true) ...}

- Offine value relations for base types
- **2** Define term relations for base types by operation $\top \top$
- Of the second second

int
$$\rightarrow$$
 int : {(succ, fun x.x + 1),...}

- Define value relations for base types
- **2** Define term relations for base types by operation $\top \top$
- Of the second second
- Define term relations for complex types by operation $\top \top$

- Define value relations for base types
- **2** Define term relations for base types by operation $\top \top$
- Of the second second
- Define term relations for complex types by operation $\top \top$

Relations for Closed Terms

- Value relation: $T(\theta, \delta)^{\text{val}}$
- Term relation: $T(\theta, \delta)^{tm}$

Here,

• θ is a valuation for type variables in T

•
$$\theta = \{ \alpha \mapsto (\mathbf{r}, \mathbf{T}_1, \mathbf{T}_2), \ldots \}$$

 ${\it r}$ is a term relation and an interpretation of α

- Notation: $\theta_i = \{(\alpha \mapsto T_i), ...\}$
- δ is a valuation for variables in T

•
$$\delta = \{x \mapsto (v_1, v_2), ...\}$$

• Notation: $\delta_i = \{(x \mapsto v_i), ...\}$

Value/Term Relation: Base Types

Base type: B

Value Relation

$$(v_1, v_2) \in B(\theta, \delta)^{\mathsf{val}}$$
 iff
 $v_1 = v_2$ and v_1 is a constant of B

Term Relation

$$B(\theta, \delta)^{\mathsf{tm}} = (B(\theta, \delta)^{\mathsf{val}})^{\top \top}$$

Value/Term Relation: Dependent Function Types

Value Relation

$$\begin{array}{l} (\textbf{\textit{v}}_1, \textbf{\textit{v}}_2) \in (\textbf{\textit{x}}: \mathcal{T}_1 \rightarrow \mathcal{T}_2)(\theta, \delta)^{\mathsf{val}} \text{ iff} \\ \text{for any } (\textbf{\textit{v}}_1', \textbf{\textit{v}}_2') \in \mathcal{T}_1(\theta, \delta)^{\mathsf{tm}}, \\ (\textbf{\textit{v}}_1 \ \textbf{\textit{v}}_1', \textbf{\textit{v}}_2 \ \textbf{\textit{v}}_2') \in \mathcal{T}_2(\theta, \delta\{\textbf{\textit{x}} \mapsto \textbf{\textit{v}}_1', \textbf{\textit{v}}_2'\})^{\mathsf{tm}} \end{array}$$

Term Relation

$$(x:T_1
ightarrow T_2)(heta, \delta)^{\mathsf{tm}} = ((x:T_1
ightarrow T_2)(heta, \delta)^{\mathsf{val}})^{ op op}$$

Value/Term Relation: Refinement Types

Value Relation

$$(v_1, v_2) \in \{x: T \mid e\}(heta, \delta)^{\mathsf{val}}$$
 iff

•
$$(v_1, v_2) \in T(\theta, \delta)^{tm}$$

•
$$heta_1(\delta_1(e[v_1/x])) \rightsquigarrow^* \mathsf{true}$$

•
$$heta_2(\delta_2(e\left[v_2/x
ight])) \rightsquigarrow^*$$
 true

Term Relation

$$\{x: T \mid e\}(\theta, \delta)^{\mathsf{tm}} = (\{x: T \mid e\}(\theta, \delta)^{\mathsf{val}})^{\top \top}$$

Logical Relation for Open Terms

Definition (Logical Relation for Open Terms)

- $\Gamma \vdash e_1 \simeq e_2 : T \text{ iff}$
 - $\bigcirc \ \Gamma \vdash e_1 : T$
 - $(\theta_1(\delta_1(e_1)), \theta_2(\delta_2(e_2))) \in T(\theta, \delta)^{\mathsf{tm}}$ where $\Gamma \vdash \theta; \delta$
 - e_1 and e_2 are related for well-formed substitution θ and δ

Properties of Logical Relation

Theorem (Soundness) If $\Gamma \vdash e_1 \simeq e_2$: *T*, then $\Gamma \vdash e_1 \approx e_2$: *T*

ullet Prove that \simeq satisfies the properties defining \approx

Theorem (Completeness w.r.t Typed Terms) If $\Gamma \vdash e_1 \approx e_2 : T$ and $\Gamma \vdash e_2 : T$, then $\Gamma \vdash e_1 \simeq e_2 : T$

• An orthodox method doesn't go through

Soundness: Overview of Proof

We must prove that for soundness

the logical relation satisfies

- reflexivity, transitivity, typed symmetry
- compatibility
- substitutivity

Note that

- it suffices to prove only compatibility and substitutivity in [3]
- all the properties are proved in this work

[3] Pitts, 2005

Contents

1 A Manifest Contract Calculus: F_{H}^{fix}

2 Semi-Typed Contextual Equivalence

3 Logical Relation

Opcast Elimination

5 Discussion

Upcast Elimination

Upcast Elimination

An upcast and an identity function are contextually equivalent

Lemma

If
$$\Gamma \vdash T_1 <: T_2$$
, then
 $\Gamma \vdash \langle T_1 \Rightarrow T_2 \rangle^{\ell} \simeq (\texttt{fun } x : T_1. x) : T_1 \rightarrow T_2$

Corollary

If
$$\Gamma \vdash T_1 <: T_2$$
, then
 $\Gamma \vdash \langle T_1 \Rightarrow T_2 \rangle^{\ell} \approx (\texttt{fun } x : T_1. x) : T_1 \rightarrow T_2$

Contents

1 A Manifest Contract Calculus: $F_{\rm H}^{\rm fix}$

Semi-Typed Contextual Equivalence

3 Logical Relation

Upcast Elimination

4 E 6 4

Conclusion

- A sound logical relation w.r.t semi-typed contextual equivalence
- Proof of upcast elimination

Technically,

- ⊤⊤-closure works in manifest contract calculus with non-termination
 - The proofs of the properties are troublesome
- "Semi-typedness" doesn't complicate the proof of soundness
 - affects the proof of completeness

Future Work

- Unrestricted completeness
 - removal of "typedness" assumption
- Correctness of other optimizations
- Effects other than non-termination