Verifying a higher-order,
concurrent, stateful library

Kasper Svendsen, Lars Birkedal and Matthew Parkinson

September 9,2012
HOPE 2012

A case study ...

* C# Joins library [Russo, Turon & Russo]

* declarative way of defining synchronization primitives, based on
the join calculus [Fournet & Gonthier]

* combines higher-order features with state, concurrency,
recursion through the store and fine-grained synchronization

e small (150 lines of C#) realistic library

A case study in modularity

Locks

\

Barriers

/

[Joins specification j

/

Lock-based

N\

Lock

Non-locking

Concurrent bag

Join clients

Join implementations

Joins example

class RWLock {
public SyncChannel acqR, acgW, relR, relW; m
private AsyncChannel unused, shared, writer;

public RWLock () {
Join join = new Join();
// ... initialize channels

W join.When(acgR) .And(unused) .Do(() => { readers++; shared(); });
unused () ;
) send a message on e e
) the unused channel

A reader/writer lock

synchronous channels to asynchronous channels

acquire and release the lock encode the state of the lock

class RWLock {
public SyncChannel acgR, acgW, relR, relW;
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() { each chord matches and sends

Join join = new Join(); exactly one asynchronous message
// ... initialize channels

join.When(acgR) .And (unused) .Do(() => { })
join.When(acgR) .And(shared) .Do(() => { readers++; shared(); });
join.When(acgW) .And (unused) .Do(() => { writer(); 1});
join.When(relW) .And(writer) .Do(() => { unused(); 1});
join.When(relR) .And(shared) .Do(() => {

if (--readers == 0) unused() else shared(); });

readers++; shared();

unused() ;
} initially, there is exactly one

; pending asynchronous message

Verification challenges

class RWLock {
public SyncChannel acqR, acgW, relR, relW;
private AsyncChannel unused, shared, writer;
private int readers = 0;

reentrant continuation

public RWLock () {
Join join = new Join();
// ... initialize channels

join.When(acgR) .And(unused) .Do(() => { readers++; shared(); });
join.When(acgR) .And(shared) .Do(() => { readers++; shared(); });
{
{

join.When(acgW) .And(unused) .Do(() => writler(); });
join.When(relW) .And(writer).Do(() => unudled(); });
join.When(relR) .And(shared) .Do(() => {

if (--readers == 0) unused() else shared

unused() ;

} state effect

Joins specification

Locks Barriers

N\ /

/ N\

Lock-based Non-locking

Lock Concurrent bag

Specification

® Requirements:
® Ownership transfer
® Stateful reentrant continuations

® Restrict attention to non-self-modifying clients

ldeas

® | et clients pick an ownership protocol for each channel

® The channel pre-condition describes the resources the sender is
required to transfer to the recipient upon sending a message

® The channel post-condition describes the resources the recipient is
required to transfer to the sender upon receiving the message

® The channel post-condition of asynchronous channels must be emp

® Prove chords obey the ownership protocol, assuming channels
obey the ownership protocol (to support reentrancy)

Specification

® Send a message on channel ¢ (async or sync)

transfer channel pre-

family of channel pre- and post-conditions, indexed by channels condition from client to

join instance

uoin(P, @, j) * chan(c, j) * P(c)}
c()
Uoin(P, @, j) * chan(c, j) * Q(c)}
transfer channel post-

condition from join
instance to client

if c is an asynchronous channel, then

channel post-condition must be emp

Specification

® Register a new chord with pattern p and continuation b

pattern p matches the multiset of channels X

jOininit—pat(Pa Qa]) * pattern(pajv X)
b= {®rex P(x) *join(P,Q,7)}
{®:cEXQ(x) .

p- DO(b) resources senders must
. : transfer to recipient
{Jominit—pat(P7 Q’])}

resources recipient must

transfer to senders

Specification

® Register a new chord with pattern p and continuation b

Joini i pat (P, Q, j) * pattern(p, 7, X)
¢ b {@.exPlx) *join(P,Q,)}
{®x€XQ($) *jOin(Pv ij)}
p.Do(b)

{jOininit-pat (P, Q’]) } the continuation is allowed to

assume channels obey their
ownership protocol

Verifying Clients

Locks Barriers

N\ /

[Joins specification J

/ N\

Lock-based Non-locking

Lock Concurrent bag

Reader/VWVriter lock

® Given resource invariants R and Ry, (picked by client) s.t.
Vn € N. R(n) < R, x R(n+1)
® R/, :read permission to underlying resource
® R(0): write permission to underlying resource

® R(n): resource after splitting off n read permissions

® The reader/writer lock satisfies the following specification

{emp} acqR() {Rro} {Rro} rTelR() {emp;}
{emp} acqW() {R(0)} £(0)) relW() {empj

* Assign pre-conditions to asynchronous channels

P(unused) = readers — 0 * R(0)
P(shared) = dn € N. readers — n*x R(n)xn >0

P(writer) = readers +— 0

* Assign pre- and post-conditions to synchronous channels

P(acgR) = emp Q)(acqR) = R,

P(acgW) = emp Q(acqW) = R(0)
P(relR) = R,, (Q)(relR) = emp
P(relWw) = R(0) Q(relW) = emp

® Prove chords obey channel ownership protocol

class RWLock {
bﬁﬁlic int readers = 0;
public RWLock () {
jé%n.When(ach).And(unused).Do(() => { readers++; shared(); });
} - /\
} 4)
{P(acqR) * P(unused) * join(P,Q,j)}

readers++

shared () ;

1Q(acqR) * Q(unused) * join(P,Q, j)
. y

® Prove chords obey channel ownership protocol

class

RWLock {

public int readers = 0;

public RWLock () {

join.When(acgR) .And (unused) .Do(() => { readers++; shared(); });

)

[

_

~
{readers — 0 x R(0) x join(P,Q,j)}

readers++
{readers — 1% R(1) x R, x join(P,Q,j)}

shared () ; \§§§t::::::,

{R,, x join(P,Q,j)} P(shared) = dn € N.

readers — n * R(n)

\

J

Verifying an Implementation

Locks Barriers
N\ /
[Joins specification j
/ \

_ Non-locking
| |

- Concurrent bag

Verifying an Implementation

® Challenges:

® High-level join primitives implemented using
shared mutable state

® Definition of recursive representation predicates

guarded recursion & step-indexed model

Messages

class Message {
public int state;

public Message() {
state = 0;
}

public void Receive() {
state = 1,
}
}

Messages

* Assume channel pre- and post-conditions P and Q

* |Imagine a message on channel ¢

pending matched received released

state — 0 ’ . state — 1 | .

== anybody can perform this transition
- only message sender can perform this transition

Messages

* Use Concurrent Abstract Predicates [Dinsdale-Young et. al.]
to impose this low-level protocol on messages

pending matched received released

=3 anybody can perform this transition

higher-order protocol

—-} only message sender can perform this transition

HOCAP

® Higher-order protocols are difficult; the previous
proposal [Dodds et. al.] from POPLI | is unsound!

® We restrict attention to state-independent higher-
order protocols.An assertion P is expressible using
state-independent protocols (SIPs) iff

AR, S : Prop. valid (P < R .S) A noprotocol(R) N\ nostate(S)

invariant under arbitrary invariant under arbitrary
changes to protocols changes to the state

® We require all channel pre- and post-conditions to be
expressible using SIPs

Summary

Verified the lock-based joins implementation
against the high-level joins specification

Verified a couple of classic synchronization
primitives using the high-level joins specification

Given a logic and model for HOCAP with support
for state-independent higher-order protocols

TRs available at www.itu.dk/~kasv

http://www.itu.dk/~kasv
http://www.itu.dk/~kasv

Questions!

Higher-order protocols in CAP

Let

P (0% (y—0] v yHOS))\/

(x — 1% yHOZ)

where
Ial:y— 1~ y—2
Ja]:y—1~>y—3
Kla]: P~ P

/

then P is stable, but | P ; is not

